## Natural Dye Extraction with Natural Mordant from Some Dye Producing Plants

Myat Myat Moe<sup>1</sup>, That Sin Nwe<sup>2</sup>

### Abstract

Natural dyes derived from natural resources have emerged as an important alternative to synthetic dyes. The majority of the natural dyes are from plants. In this paper, natural dyes were extracted by using post-mordanting method from the petal of *Clitoria ternatea* L. (Aung-mae-nyo), tap root of *Daucus carota* (Hoffm) Schubl. KG Martens (Mone-lar-oo-ni), bark of *Ficus religiosa* L. (Naung-pin), leaves of *Lawsonia inermis* L. (Dan-gyi), fruit skin of *Vitis bryoniifolia* Bunge (Sa-pyit). The natural mordant such as tamarind, lime and Myanmar green tea leaves were used to fix the dye on the fabric. The resulted pH value and formation of color tones were recorded during the dyeing process. The extraction of dyes from natural resource plants is one of the commercial importance for textile or fabric industry. By using these natural mordant, the various plant parts (natural resources) gave different color pattern and also enhance to reduce the environmental pollution than chemical dyes.

**Keywords:** Natural dyes, synthetic dyes, post-mordanting method, textile or fabric industry, environmental pollution

### Introduction

Natural dyes or colorants derived from flora are believed to be safe because of its nontoxic, non-carcinogenic and biodegradable in nature. Natural dyes are nowadays demand not only in textile industry but in cosmetics, leather, food and pharmaceuticals (Gokhale *et al.*, 2004). Normally natural dyes are extracted from the roots, stems, leaves, flowers, fruits of various plants, dried bodies of certain insects and minerals. Most of the natural dyes have no substantively on cellulose or other textile fibers without the use of a mordant. The majority of natural dyes need a mordanting. (Samanta *et al.*, 2010). In contrast, natural dyes are environmental friendly, exhibit better biodegradability and generally have a higher compatibility with the environmental than synthetic dyes. (Ahlstrom *et al.*, 2005). The process is economically viable as the raw materials are available at low cost and so cost of production is also very low.

## **Materials and Methods**

The different parts of plant were collected and boiled with distilled water (6000 mL) for about 60 minutes. The crude extract of dye liquid in dye bath was 1 Liter and measured the resulted pH. Then wool soaked in dye bath for 45 minutes with three types of natural mordants (Tamarind, Lime, Myanmar green tea leaves). Finally air dry in shade and observed color formation. But in the *Lawsonia inermis* L. the leaves were needed to pound before extracting dye.

<sup>&</sup>lt;sup>1</sup> Dr Professor and Head, Department of Botany, Dagon University

<sup>&</sup>lt;sup>2</sup> Dr., Lecturer, Department of Botany, Dagon University

| No. | Myanmar<br>Name    | Part<br>used  | Weight<br>(g) | Volume of<br>water liter<br>(ml) | Duration of<br>Boiling time<br>(min) | Frequency<br>of<br>swimmer | Treatment           |
|-----|--------------------|---------------|---------------|----------------------------------|--------------------------------------|----------------------------|---------------------|
| 1   | Aung-mae-<br>nyo   | Petal         | 600           | 6000                             | 45 min                               | 1                          | Cut into pieces     |
| 2   | Mone-lar-<br>oo-ni | Taproot       | 600           | 6000                             | 45 min                               | 1                          | Cut into pieces     |
| 3   | Nyaung-<br>pin     | Bark          | 600           | 6000                             | 45 min                               | 2                          | Cut into pieces     |
| 4   | Dan                | Leaves        | 600           | 6000                             | 45 min                               | 1                          | Pounded into pieces |
| 5   | Sa-pyit            | Fruit<br>skin | 600           | 6000                             | 45 min                               | 1                          | Peel into pieces    |

Table 1.Preparation for extraction of dye from some resources plants

## Results

## Table 2.List of plants for extraction

| No | Scientific name                 | Myanmar Name   | English<br>Name | Family     | Part used  |
|----|---------------------------------|----------------|-----------------|------------|------------|
| 1. | Clitoria ternatea L.            | Aung-mae-nyo   | Butterfly pea   | Fabaceae   | Petal      |
| 2. | Daucus carota subsp. sativus L. | Mone-lar-oo-ni | Carrot          | Apiaceae   | Taproot    |
| 3. | Ficus religlosa L.              | Nyaung-pin     | Sacred fig      | Moraceae   | Bark       |
| 4. | Lawsonia inermis L.             | Dan            | Henna           | Lythraceae | Leaves     |
| 5. | Vitis bryoniifolia Bunge.       | Sa-pyit        | Grape           | Vitaceae   | Fruit skin |

 Table (3).
 Color formation of *Clitoria ternatea* L. treated with different concentration of different natural mordant

| Treatment  | Resultant pH | Duration<br>dveing | of | Mordant                            | Resultant Color |
|------------|--------------|--------------------|----|------------------------------------|-----------------|
| Control    | acidic       | 45 min             |    | -                                  | Blue            |
| $T_1$      | acidic       |                    |    | Tamarind (4 ml)                    | Pale purple     |
| $T_2$      | acidic       |                    |    | Tamarind (4 ml)                    | Pale purple     |
| $T_3$      | acidic       |                    |    | Tamarind (6 ml)                    | Dark purple     |
| $T_4$      | acidic       |                    |    | Lime (2 ml)                        | Pale blue       |
| $T_5$      | acidic       |                    |    | Lime (4 ml)                        | Pale blue       |
| $T_6$      | acidic       | 45 min             |    | Lime (6 ml)                        | Pale blue       |
| $T_7$      | acidic       |                    |    | Myanmar Green Tea Leaves (2        | Pale blue       |
|            |              |                    |    | ml)                                |                 |
| $T_8$      | acidic       |                    |    | Myanmar Green Tea Leaves (4<br>ml) | Dark purple     |
| <b>T</b> 9 | acidic       |                    |    | Myanmar Green Tea Leaves (6<br>ml) | Dark purple     |





Figure 3. Coloration of dye wools extracted from *Clitoraia ternatea* L.

 Table 4.
 Color formation of *Daucus carota subsp. sativus* L. treated with different concentration of different natural mordant

| Treatment             | Resultant pH | Duration dyeing | of | Mordant                         | Resultant Color |
|-----------------------|--------------|-----------------|----|---------------------------------|-----------------|
| Control               | acidic       | 30 min          |    | -                               | Blue            |
| $T_1$                 | acidic       |                 |    | -                               | Pale orange     |
| $T_2$                 | acidic       |                 |    | Tamarind (2 mL)                 | Pale orange     |
| <b>T</b> <sub>3</sub> | basic        |                 |    | Tamarind (4 mL)                 | Pale orange     |
| $T_4$                 | acidic       |                 |    | Tamarind (6 mL)                 | Dark orange     |
| $T_5$                 | acidic       | 45 min          |    | Lime (2mL)                      | Pale orange     |
| $T_6$                 | basic        |                 |    | Lime (4 mL)                     | Dark orange     |
| $T_7$                 | acidic       |                 |    | Lime (6mL)                      | Pale orange     |
| T <sub>8</sub>        | acidic       |                 |    | Myanmar green tea leaves (2 mL) | Pale orange     |
| T <sub>9</sub>        | basic        |                 |    | Myanmar green tea leaves (4 mL) | Dark orange     |



Figure 4. Habit and Part<br/>used of Daucus<br/>carota sub sp.<br/>sativus L.Figure 5. Coloration of dve wools extracted from Daucus carota sub sp.

## Table 5. Color formation of *Ficus religiosa* L. treated with different concentration of different natural mordant

| Treatment             | Resultant pH | Duration of dyeing | Mordant                            | Resultant Color |
|-----------------------|--------------|--------------------|------------------------------------|-----------------|
| Control               | acidic       | 45 min             |                                    | Pale Red        |
| $T_1$                 | acidic       |                    | Tamarind (2 ml)                    | Pale Red        |
| $T_2$                 | acidic       |                    | Tamarind (4 ml)                    | Pale Red        |
| $T_3$                 | basic        |                    | Tamarind (6 ml)                    | Dark orange     |
| $T_4$                 | acidic       |                    | Lime (2mL)                         | Pale brown      |
| $T_5$                 | acidic       | 45 min             | Lime (4 mL)                        | Dark brown      |
| $T_6$                 | basic        |                    | Lime (6mL)                         | Pale brown      |
| $T_7$                 | acidic       |                    | Myanmar Green Tea Leaves (2<br>ml) | Pale red        |
| $T_8$                 | acidic       |                    | Myanmar Green Tea Leaves (4<br>ml) | Pale red        |
| <b>T</b> <sub>9</sub> | basic        |                    | Myanmar Green Tea Leaves (6<br>ml) | Dark red        |



Figure 6. Habit and Part used of *Ficus* 

# Table 6. Color formation of Lawsonia inermis L. treated with different concentration of different natural mordant

| Treatment | Resultant pH | Duration of dyeing | Mordant         | Resultant Color |
|-----------|--------------|--------------------|-----------------|-----------------|
|           |              |                    |                 |                 |
| Control   | acidic       | 45 min             | -               | Yellow          |
| $T_1$     | acidic       |                    | Tamarind (2 ml) | Dark yellow     |
| $T_2$     | acidic       |                    | Tamarind (4 ml) | Dark yellow     |
|           |              |                    |                 | 2               |

\_

a,

| $T_3$ | basic  |        | Tamarind (6 ml)             | Pale yellow  |
|-------|--------|--------|-----------------------------|--------------|
| $T_4$ | acidic |        | Lime (2mL)                  | Pale orange  |
| $T_5$ | acidic | 45 min | Lime (4 mL)                 | Pale orange  |
| $T_6$ | basic  |        | Lime (6mL)                  | Pale orange  |
| $T_7$ | acidic |        | Myanmar Green Tea Leaves (2 | Light orange |
|       |        |        | ml)                         |              |
| $T_8$ | acidic |        | Myanmar Green Tea Leaves (4 | Light orange |
|       | acture |        | ml)                         |              |
| $T_9$ | basic  |        | Myanmar Green Tea Leaves (6 | Pale orange  |
|       |        |        | ml)                         |              |



Figure 9. Coloration of dve wools extracted from Lawsonia inermis L.

Figure 8. Habit and Part used of *Lawsonia inermis* 

| Table 7. | Color formation of Vitis bryoniifolia Bunge. treated with different concentration of |
|----------|--------------------------------------------------------------------------------------|
|          | different natural mordant                                                            |

| Treatment             | Resultant pH | Duration<br>dyeing | of | Mordant                            | Resultant Color |
|-----------------------|--------------|--------------------|----|------------------------------------|-----------------|
| Control               | acidic       | 45 min             |    | -                                  | Magenta         |
| $T_1$                 | acidic       |                    |    | Tamarind (2 ml)                    | Pale red        |
| $T_2$                 | acidic       |                    |    | Tamarind (4 ml)                    | Dark red        |
| <b>T</b> <sub>3</sub> | basic        |                    |    | Tamarind (6 ml)                    | Dark red        |
| $T_4$                 | acidic       |                    |    | Lime (2mL)                         | Pale pink       |
| $T_5$                 | acidic       | 45 min             |    | Lime (4 mL)                        | Pale pink       |
| $T_6$                 | basic        |                    |    | Lime (6mL)                         | Pale pink       |
| <b>T</b> <sub>7</sub> | acidic       |                    |    | Myanmar Green Tea Leaves (2<br>ml) | Dark purple     |
| <b>T</b> <sub>8</sub> | acidic       |                    |    | Myanmar Green Tea Leaves (4<br>ml) | Dark purple     |
| T9                    | basic        |                    |    | Myanmar Green Tea Leaves (6<br>ml) | Pale purple     |





Figure 11. Coloration of dve wools extracted from Vitis brvoniifolia Bunge.

Figure 10. Habit and Part used of Vitis brvoniifolia Bunge.

## **Discussion and Conclusion**

Natural dyes have played an important role in the ecological and cultural heritage of human civilizations. Although plants exhibit a wide range of color, not all of these pigments can be used as dyes. Dyes are organic compound which are widely used for imparting color to textiles (Hendery, 1995). In this paper, the three natural mordant such as, vinegar, tamarind and Myanmar green tea leaves were selected to improve color fastness by using Yamazaki method (2000). According to the color formation the concentration of mordant and resulted pH value were also influenced on color pattern. A part from these, mordanting improves fastness, often also exhaustion and additionally it makes desirable deepening and interesting spectral alternation of a color (Vankar, 2001).

Natural dyes were extracted by using post-mordanting method from bark of the petal of *Clitoria ternatea* L. (Aung-mae-nyo) gave purple color, tap root of *Daucus carota* (Hoffm) Schubl. KG Martens (Mone-lar-oo-ni) show orange color, *Ficus religiosa* L. (Naung-pin) performed brown and red color, leaves of *Lawsonia inermis* L. (Dan-gyi) gave yellow and orange color, fruit skin of *Vitis bryoniifolia* Bunge (Sa-pyit) expressed red, pink and purple color. These findings are in accordance with Abel (2012) He stated that color of the dye on the fabric was the function not only of the mordant but also of the dyeing techniques; different colors were obtained from natural resources. Natural dye extraction needed to carry out an extensive research and development. However, natural dyes come from natural resources are not harmful to the environment; biodegradable and disposing them don't cause pollution.

#### References

- Abel, A (2012), The history of dyes and pigments: from natural dyes to high performance pigments. Color Design.
- Ahlstrom L., Eskilsson C. S., Burkill, L.H., 1935. A Dictionary of the Economics Product of the Malay Peninsula, (Vol. I and II) Oxford University Press, London.
- Gokhale, S B, Tatiya, A U, Bakliwal, S R and Fursule, R A (2004): Natural dye yielding plants in India, *Nat Prod Rad*, 3(4): 228-237.
- Hendery, B., (1995). Natural Food Colorants, edited by G.A.F Hendry and J.D Houghton, London.
- Kirtikar, K.F and B.D., Basu.1935. Indian Medicinal Plants, (Vol I, II, III, IV).
- Samanta A K and Agarwal P (2009): Application of natural dyes on textiles, *Indian J Fibre Textile* Res, 34: 384-399.
- Vankar, P.S., Tiwari, V. and Ghorpade, B., (2001). Proceeding of Convention of Natural Dyes. Gupta, D. and Gulrajani, M.L., Department of Textile Technology, II T Delhi, 5.

- Veilleux, (2006). Ethnobotanical Investigation of Traditional Natural Dyes, Department of Pharmacognosy, India.
- Yamazaki, (2000). The colouration at clothes was altered accordintg to change of natural as well as chemical mordants.