EXTRACTION OF NATURAL DYES FROM SOME DYE PRODUCING PLANTS

That Sin Nwe¹, Nandar Wint², Yamone Aye³, Myat Myat Moe⁴
Abstract

Dyes are one of the most important uses of the plants. The different parts of plants were used to extract natural dyes by using pre-mordanting method. Not only chemical (alum, copper II sulphate, quick lime) but also natural mordants (tamarind, inegar, Myanmar Green Tea Leaves) were used for fixing the color on the 14×3 cm and 1.15 g of wool. The resulted pH value and color formation pattern were recorded after mordanting.

Keywords: Chemical, natural, dye, mordant

INTRODUCTION

Myanmar has a rich biodiversity and plant kingdom is a treasure-house of diverse natural products. One such product from nature is the dye. Dyes are defined as colored substance that can be fixed firmly to a material to be dyed. Various plant parts including roots, leaves, twigs, stems, heartwood, barks, wood, taproots, flowers and fruits are the most preferred for production of the dye. Some parts may have more than one color depending upon which part of the plants is used. The shade of color, a plant produces will vary according to season at which the plant is picked, how it was grown, soil condition, etc (Hendery, 1995). The aims and objectives of the present research work are to collect the dye yielding species in study area, to know the processes of the extraction of dye from wild species and to study different types of mordant give different color tone.

MATERIALS AND METHODS

In this study, dye were extracted from the different parts such as fresh barks, leaves, flowers, rhizome and fruits by using the method of Seiju Yama zaki (2000) with some modifications. These raw materials were chopped into small pieces and boiled with distilled water (6000 mL) about 60 minutes. The solution was tested with litmus paper and recorded the value of pH. According to the post –mordanting technique, a piece of wool (14 x 3 cm and 1.15 g) was dipped in the dyebath with chemical and natural mordant for 30 and 45 minutes respectively. Then air-dry in shade was observed color formation.

Table (1) List of dye producing species in study area

No	Scientific name	Myanmar Name	English Name	Family	Part used
1.	Artocarpus heterophyllus L.	Pein-ne	Jack-fruit	Moracea	Barks
2.	Brassica oleraceae L	Ka-yan-gaw-phe	Purple cabbage	Brassicaceae	Leaves
3.	Butea monosperma L.	Pauk-pin	Bastard teak	Fabaceae	Flowers
4.	Cucumis longa L.	Na-nwin	Tumeric	Zingiberacea	Rhizomes
5.	Hylocereus undatus (Haworth) Britton & Rose	Na-gar-mout	Dragon fruit	Cactaceae	Fruits

¹ Dr., Lecturer, Department of Botany, Dagon University

² Dr., Lecturer, Department of Botany, Dagon University

³ Dr., Professor and Head, Department of Botany, Dagon University

⁴ MSc, Department of Botany, Dagon University

3

4

5

	` ' 1			•			
No.	Myanmar Name	Part used	Weight (g)	Volume of water liter (ml)	Duration of Boiling time (min)	Frequency of swimmwer	Treatment
1	Pein-ne	Bark	600	6000	45 min	2	Cut into pieces
2	Ka-yan-gaw-phe	Leaves	600	6000	30 min	1	Cut into pieces

6000

6000

6000

Table (2) Preparation for extraction of dye from some resources plants

600

600

600

RESULTS

Arotocarpus heterophyllus L. Scientific Name -

Flower

Rhizome

Fruit

Myanmar Name -Pein-ne English Name Jackfruit Family Moraceae Part used Bark

Pauk -pin

Na-nwin

Na-garmout

30 min

30 min

30 min

Cut into pieces

Struck into pieces Peel into pieces

Habit

Part used

Figure (2) Habit and Part used of Arotocarpus heterophyllus L.

1

1

1

Distinct character

Perennial, monoecious, every green trees. Leaves alternately arranged, elliptical, often lobed on young trees but entire on mature trees. Inflorescence commonly borne on thick branches or the trunk of the tree. Fruit huge.

Table (3) Color formation of Tumeric treated with different concentration of different mordant

(Chemical mordant)

Treatment	Resultant pH	Duration of dyeing	Mordant	Resultant Color
Control	3	30 min	-	Yellow
T_1	2		Alum (1 g)	Pale yellow
T_2	2		Alum (2 g)	Pale yellow
T_3	4		Alum (3 g)	Dark yellow
T_4	2	30 min	Copper II sulfate (1 g)	Pale green
T_5	2	50 mm	Copper II sulfate (2 g)	Bright green
T_6	4		Copper II sulfate (3 g)	Yellowish green
T ₇	2		Quick lime (1 g)	Pale yellow
T_8	2		Quick lime (2 g)	Bright yellow
T ₉	4		Quick lime (3 g)	Bright yellow

Color formation of Tumeric treated with different concentration of different Table (4) mordant

(Natural mordant)

(Pattiral mortant)						
Treatment	Resultant pH	Duration of dyeing	Mordant	Resultant Color		
Control	3	45 min	-	Yellow		
T_1	1		Tamarind (2 ml)	Pale brown		
T_2	2		Tamarind (4 ml)	Pale brown		
T_3	4		Tamarind (6 ml)	Brown		
T_4	1		Vinegar(2 ml)	Pale yellow		
T_5	2	45 min	Vinegar (4 ml)	Pale yellow		
T_6	4	-	Vinegar(6 ml)	Pale yellow		
T_7	1		Myanmar Green Tea Leaves (2 ml)	Yellow		
T_8	2		Myanmar Green Tea Leaves (4 ml)	Yellow		
T ₉	4		Myanmar Green Tea Leaves (6 ml)	Pale yellow		

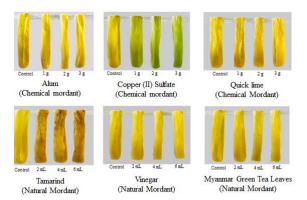


Figure (3) Color pattern of dye wools extracted from Artocarpus heterophyllus L.

Scientific Name - Brassica oleraceae var.

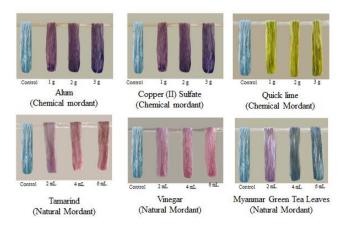
capitata F. rubra L.

Myanmar Name - Ka-yan-gaw-phe English Name - purple cabbage Family - Brassicaceae

Part used - Leaves

Figure (4) Habit and Pairt used of Part used

Brassica oleraceae var. capitata F. rubra L.


Distinct character

Annual herbs. Leaves lower and basal petiolate. Inflorescence spreading. Seed globose, dark brown, finely reticulate.

Treatment	Resultant pH	Duration of dyeing	Mordant	Resultant Color
Control	3	30 min	-	Blue
T ₁	4		Alum (1 g)	Dark blue
T_{2}	5		Alum (2 g)	Dark blue
T_{3}	6	20 .	Alum (3 g)	Pale blue
T ₄	4	30 min	Copper II sulfate (1 g)	Pale purple
T_{5}	5		Copper II sulfate (2 g)	Pale purple
T ₆	6		Copper II sulfate (3 g)	Dark purple
T ₇	4		Quick lime (1 g)	Pale yellow
T ₈	5		Quick lime (2 g)	Pale yellow
T ₉	6		Quick lime (3 g)	Dark yellow

Table (6) Color formation of Tumeric treated with different concentration of different mordant (Natural mordant)

Treatment	Resultant pH	Duration of dyeing	Mordant	Resultant Color
Control	3	45 min	-	Blue
T	1		Tamarind (2 ml)	Pale purple
T_{2}	2		Tamarind (4 ml)	Pale blue
T_{3}	3	45 min	Tamarind (6 ml)	Pale blue
$T_{_4}$	1	43 11111	Vinegar(2 ml)	Pale purple
T ₅	2		Vinegar (4 ml)	Pale red
T ₆	3		Vinegar(6 ml)	Pale red
T ₇	1		Myanmar Green Tea Leaves (2 ml)	Pale purple
T ₈	2		Myanmar Green Tea Leaves (4 ml)	Pale purple

Color pattern of dye wools extracted from Brassica oleraceae var. Figure (5) capitata

F. rubra L.

Scientific Name Butea onosperma L.

Myanmar Name Paunk-pin **English Name** bastard teak Family Fabaceae Part used Flower

Distinct character

Figure (6) Habit and Part used of Butea onosperma L.

Dry-season deciduous tree. Leaves pinnate, three leaflets. Flower bright orange-red fruit pod.

Color formation of Tumeric treated with different concentration of different mordant (Chemical mordant)

Treatment	Resultant pH	Duration of dyeing	Mordant	Resultant Color
Control	4	30 min	-	Orange
T_{1}	6	30 min	Alum (1 g)	Light yellow
T ₂	6		Alum (2 g)	Light yellow
T ₃	7		Alum (3 g)	Pale yellow
T ₄	6		Copper II sulphate (1 g)	Pale green
T ₅	6		Copper II sulphate (2 g)	Pale green
T ₆	7		Copper II sulphate (3 g)	Light green
T ₇	6		Quick lime (1 g)	Pale orange
T ₈	6		Quick lime (2 g)	Dark t orange
T ₉	7		Quick lime (3 g)	Dark orange

Color formation of Tumeric treated with different concentration of different mordant (Natural mordant)

Treatment	Resultant pH	Duration of dyeing	Mordant	Resultant Color
Control	4	45 min	-	Orange
T_{1}	2	45 min	Tamarind (2 ml)	Pale yellow
T_{2}	3	43 11111	Tamarind (4 ml)	Dark yellow
T ₃	5		Tamarind (6 ml)	Light yellow
$T_{_4}$	2		Vinegar(2 ml)	Pale yellow
T ₅	3		Vinegar (4 ml)	Dark yellow
T_{6}	5		Vinegar(6 ml)	Dark yellow
T_{7}	2		Myanmar Green Tea Leaves (2 ml)	Light orange
$T_{_8}$	3		Myanmar Green Tea Leaves (4 ml)	Dark orange

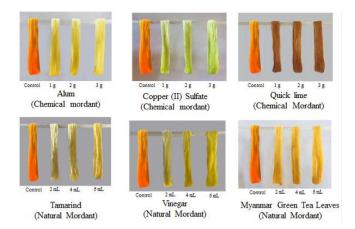


Figure (7) Color pattern of dye wools extracted from Butea Monosperma L.

Scientific Name - Curcuma longa L.

Myanmar Name - Na-nwin English Name - Tumeric

Family - Zingiberaceae

Part used - Rhizome

Part used

Figure (8) Habit and Part used of Butea onosperma L.

Distinct character

Perennial herbs, tuberous rhizomes. Leaves alternate and blades. Inflorescence terminal dense spikes, bracts numerous, unequal in size and shape. Flower bisexual.

Table (9) Color formation of Tumeric treated with different concentration of different mordant (Chemical mordant)

Treatment	Resultant pH	Duration of dyeing	Mordant	Resultant Color
Control	3	30 min	-	Yellow
T ₁	2	30 min	Alum (1 g)	Pale Yellow
T ₂	8		Alum (2 g)	Light Yellow
T ₃	13		Alum (3 g)	Dark Yellow
T ₄	2		Copper II sulphate (1 g)	Pale Green
T ₅	8		Copper II sulphate (2 g)	Dark Green
T ₆	13		Copper II sulphate (3 g)	Light Green
T ₇	2		Quick lime (1 g)	Pale Scarlet
T ₈	8		Quick lime (2 g)	Pale Scarlet
T ₉	13		Quick lime (3 g)	Dark Scarlet

Table (10) Color formation of Tumeric treated with different concentration of different mordant (Natural mordant)

moruant (Natural moruant)					
Treatment	Resultant pH	Duration of dyeing	Mordant	Resultant Color	
Control	3	45 min	-	Yellow	
T_1	4	45 min	Tamarind (2 ml)	Pale Yellow	
T_2	5		Tamarind (4 ml)	Pale Yellow	
T_3	6		Tamarind (6 ml)	Dark Yellow	
T_4	4		Vinegar(2 ml)	Pale Yellow	
T_5	5		Vinegar (4 ml)	Light Yellow	
T_6	6		Vinegar(6 ml)	Light Yellow	
T_7	4		Myanmar Green Tea Leaves (2 ml)	Pale Yellow	
T_8	5		Myanmar Green Tea Leaves (4 ml)	Pale Yellow	
T ₉	6		Myanmar Green Tea Leaves (6 ml)	Dark Yellow	

Figure (9) Color pattern of dye wools extracted from Curcuma longa L.

Scientific Name - Curcuma longa L.

Myanmar Name - Na-nwin English Name - Tumeric Family - Zingibera

Family - Zingiberaceae Part used - Rhizome

Figure (8) Habit and Part used of

Distinct character

Butea onosperma L.

Perennial herbs, tuberous rhizomes. Leaves alternate and blades. Inflorescence terminal dense spikes, bracts numerous, unequal in size and shape. Flower bisexual.

Table (9) Color formation of Tumeric treated with different concentration of different

Table (9) Color formation of Tumeric treated with different concentration of different mordant (Chemical mordant)

Treatment	Resultant pH	Duration of dyeing	Mordant	Resultant Color
Control	3	30 min	-	Yellow
T ₁	2	30 min	Alum (1 g)	Pale Yellow
T_{2}	8		Alum (2 g)	Light Yellow
T ₃	13		Alum (3 g)	Dark Yellow
T ₄	2		Copper II sulphate (1 g)	Pale Green
T ₅	8		Copper II sulphate (2 g)	Dark Green
T ₆	13		Copper II sulphate (3 g)	Light Green
T ₇	2		Quick lime (1 g)	Pale Scarlet
T ₈	8		Quick lime (2 g)	Pale Scarlet
T ₉	13		Quick lime (3 g)	Dark Scarlet

Table (10) Color formation of Tumeric treated with different concentration of different mordant (Natural mordant)

Treatment	Resultant pH	Duration of dyeing	Mordant	Resultant Color
Control	3	45 min	-	Yellow
T_1	4	45 min	Tamarind (2 ml)	Pale Yellow
T_2	5		Tamarind (4 ml)	Pale Yellow
T_3	6		Tamarind (6 ml)	Dark Yellow
T_4	4		Vinegar(2 ml)	Pale Yellow
T_5	5		Vinegar (4 ml)	Light Yellow
T_6	6		Vinegar(6 ml)	Light Yellow
T_7	4		Myanmar Green Tea Leaves (2 ml)	Pale Yellow
T_8	5		Myanmar Green Tea Leaves (4 ml)	Pale Yellow
T ₉	6		Myanmar Green Tea Leaves (6 ml)	Dark Yellow

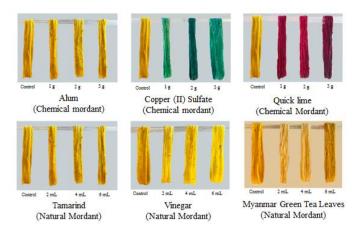


Figure (9) Color pattern of dye wools extracted from Curcuma longa L.

DISCUSSION AND CONCLUSION

The present study deals with the extraction of dye from various parts of five selected species were collected from Taungoo region. For the extraction of dye from selected species, the Japanese method Yamazaki (2000) and Myanmar traditional dyeing methods including different mordants had been used. The species of *Hylocereus undatus* (Haworth) Britton & Rose were shown red color dye. The species of *Artocarpus heterophyllus* L. possess yellow color dye and the orange colors were occurred in *Butea monosperma* L. and *Brassica oleraceae* var. *capitata* F. *rubra* L. showed magenta. In the preparation of raw materials, different plant parts needed to be prepared in different ways (cut into pieces, pounded, dipped in water for suitable time etc.

In this study, different types of mordants in which chemical as well as natural mordant were utilized to evaluate the effect of mordants on color formation. Besides of the mordants, the concentration of mordants was also influenced upon the formation of color pattern. The color pattern also correlated with the resulted pH of the dyestuff. These findings were in accordance with Vankar (2001) who stated that the intensity of color of dye extracted from the same plant material changes with the different types of mordants and resulted pH value. Color of the dye on the fabric was the function not only of the mordant but also of the dyeing techniques, different colors were obtained.

Red color dyes: most red dyes are hidden in root or bark of plant. Yellow color dyes: abundant of all hues in nature. This paper focus on dye derived from natural sources, which have emerged as an important alternative to synthesis dyes. The research fulfils the need for developing better solid-liquid extraction techniques for leaching natural colorants from plant materials for application in plant research, food as well as dyeing industries. The novel technique can be employed effectively for the extraction of coloring matter from various plant various plant resources even dispening with conventional heating requirement. This paper is hoped to provide effective utilization of natural resources as ecofriendly method in current situation of global environmental concern.

REFERENCES

Dastur J. F. F. N. I., (1951). **Useful Plants of India and Pakistan, D. B.Tarporevala and Sons, Bombay.**

Hendery, B., (1995). **Natural Food Colorants**, edited by G.A.F Hendry and J.D Houghton, London.

Veilleux, (2006). **Ethnobotanical Investigation of Traditional Natural Dyes**, Department o Pharmacognosy, India.

Vankar, P.S., Tiwari, V. and Ghorpade, B., (2001).**Proceeding of Convention of Natural Dyes**. Gupta, D. and Gulrajani, M.L., Department of Textile Technology, II T Delhi, 5. Yamazaki, (2000).**The colouration at clothes was altered according to change of natural as well as chemical mordants.**